Harmonics mitigation and solutions
Summary

I. Introduction

II. Harmonics mitigation solution

III. Case study

IV. Conclusion
I. Introduction

II. Harmonic mitigation solution

III. Case study

IV. Conclusion
I. Introduction

- The quality of electrical power is determined by the voltage
 - High-quality voltage is the best guarantee for continuous operation of equipment

The voltage signal must be perfect at the source... ...because distortion may occur at the end of the line
I. Introduction

II. Harmonic mitigation solution

III. Case study

IV. Conclusion
II. What is a harmonic waveform?

- Harmonic waveform is a distortion of the normal Sinewave
- It is characterized by its distortion level
 - For voltage (THD U - Total Harmonic Voltage Distortion)
 - For current (THD I - Total Harmonic Current Distortion)

\[
\text{THD (U or I) \%} = 100 \times \sqrt{\frac{H_2^2 + \ldots + H_n^2}{H_1^2}}
\]

Signal with harmonics = Fundamental H1 + Harmonics H2 to Hn
II. Current distortion

- Waveform examples and harmonic spectrum
 - Three-phase loads
 - Variable speed drives
 - Lifts…

- Single-phase loads
 - Computers
 - Phones
 - Lighting …
II. The effects of harmonics

- **Voltage distortion:**
 - Excessive temperature rise in motors
 - Electrical noises
 - Sensitive electronic equipment malfunction

- **Increase in the apparent power and over-sizing of sources (UPS, Genset, etc.), capacitors, cables...**
 - Derating of electrical equipment or over-sizing
 - Accelerated ageing of equipment

- **Flow of current in the neutral conductor and consequently in the PEN:**
 - Excessive temperature rise in transformer
 - Tripping of circuit breakers
II. The effects of harmonics

- Voltage distortion: influence of THDI on the THDU

- Increased RMS current

- Non-linear current circulating in the cables

- Increased THDU
II. The effects of harmonics

- Increase in the apparent power and over-sizing of sources
 > Linear load without harmonics:
 - \(\cos \phi = \text{Power factor} = \frac{P}{S} \)
 > Non-linear load:
 - DPF = Displacement Power Factor - \(\frac{P_1}{S_1} \) (50 Hz fundamental current only)
 - True Power factor = \(\frac{P}{ST} \)

\[S = \sqrt{P^2 + Q^2} \]

> \(S = \) apparent power

\[S = \sqrt{P^2 + Q^2 + D^2} \]
II. The effects of harmonics

- Flow of current in the neutral conductor
 - The H3 harmonic currents and multiples flow in the neutral conductor.
 - The cross-sectional area of the neutral conductor must be increased (1.7 times that of the phases for switch-mode power supplies).
II. Harmonics mitigation solutions

- Electromechanical solutions
- Active filters

1. Over-sizing of sources, cables, etc.
 - The harmonics are not eliminated.
 - Very costly

2. Transformers with different couplings
 - Limits h3 and multiples.

3. and 4. attenuate h5 and h7 (6-pulse bridge)

5. Attenuates harmonics at the tuning frequency.

6. Decreases THD(i).
II. Passive filter: architecture & design

- 3-phase + neutral filter
- Composed of only two elements
 - 1 serial three-phase inductance
 - 1 parallel three-phase inductance

No capacitors
No power electronics
No batteries
No micro controllers

Unmatched reliability, same as that of a dry transformer
II. Cleanwave: solution for neutral currents

● At A Glance:
 ● Zero sequence harmonic filter
 ● Reduces neutral currents in commercial & industrial buildings
 ● Balancing of 3-phase currents
 ● 12-280 kVA (expandable)
 ● 3-phase low voltage applications

● Customer benefits
 ● Simple and highly reliable design
 ● Reduction of neutral currents by 10:1
 ● Compliance with harmonic standards
 ● Capacity upgrade by parallel connection
 ● Operational savings
 ● Easy integration into power distribution cabinets (Chassis Format)
 ● Easy sizing and installer friendly
II. Sizing CleanWave

- CleanWave is designed for the most demanding situations
 - H3 harmonics and multiple: THDI up to 80%
 - Neutral current = 1.8 times phase current

- Very easy sizing

 Max power or max. I\textsubscript{phase} of the load

 Selection of the filter of immediately higher power or current

 25 kVA load

 Selection of the 30 kVA CleanWave
II. Unbalanced load tests

Balanced

I1: 150A
I2: 149A
I3: 151A
In: 21A

Input:
In = 21 A
Output:
In = 242 A

Without Ph3

I1: 112A
I2: 122A
I3: 65A
In: 25A

Input:
In = 25 A
Output:
In = 201 A

Without Ph2 & 3

I1: 107A
I2: 46A
I3: 46A
In: 25A

Input:
In = 25 A
Output:
In = 150 A

1mv=1 A
II. Active harmonic conditioner: architecture & design

- The active harmonic conditioner generates the harmonic currents required by non-linear loads. These currents are opposite in phase with respect to the current supplied by the source.
- The A.H.C is sized only for harmonic currents
- The current consumed by the load is therefore:
 \[I_{\text{load}} = I_{\text{source}} + I_{\text{conditioner}} \]
II. Reducing upstream harmonic pollution

1. Active conditioner supplies the required harmonics to the load
2. CTs analyze the harmonics required by the load
3. The harmonics are eliminated upstream and apparent power is reduced
4. Equipment is the source of harmonics
II. Sinewave standard solution: 20-480A of harmonic compensation

- SineWave includes everything for a simple and functional basic solution:
 - EMC filter to comply with EN55011 level A and IEC 1000-4
 - 7-language user interface
 - Diagnostic and maintenance menu
 - Basic indications by 3 LEDs
 - Relay contacts for remote indications
 - Terminal blocks for power and sensor connections
 - Wide choice of current transformers: split or closed
II. Sinewave features

- **Input**
 - Voltage: 400 V, - 20%, + 15%
 - Phases: 3-phase with or without neutral. Compatible with single phase and unbalanced load
 - Frequency: 50 Hz or 60 Hz, +/- 8% auto-sensing

- **Compensation characteristics**
 - Harmonics covered: H 2 to H 25
 - Type of compensation: Harmonics - cos phi - mixed (Hn + cos)
 - Compensation mode: Overall or selective (specific harmonics)
 - Attenuation ratio: >10 at full load (THDI)
 - Cos phi correction: Up to 1
 - THDU reduction: According to the installation parameters, THDU reduction will be determined by the SITE AUDIT
 - Response time: < 40 ms in overall current compensation mode
 - Overload: Automatic current limitation
II. Example: Variable Speed Drive load

Mains current without active conditioner

- I phase = 48 A
- THDI = 81%
- I neutral = 42 A
- S = 10.6 kVA
- Power factor = 0.77
- Cos phi 1 = 0.99

Mains current with active conditioner

- I phase = 38A (-21%)
- THDI (reduced by a factor of 24) = 3.4%
- I neutral = 2.6 A
- S = 8.4 kVA
- Power factor = 1
- Cos phi 1 = 1
II. Example: Variable Speed Drive load

Test Results of a 60 A Active Conditioner

Harmonic current without SineWave

Harmonic current with SineWave

THDI = 92.6%
PF = 0.73

Reduction of 27% in the line RMS current
II. Accusine solution

- Robust design suitable for heavy industrial applications
- IP54 protection enclosure is standard
- Full EMC compliance with 89/336EEC, conforms to IEC/EN 60439-1, EN61000-6-4 class A, EN61000-6-2 standards
- Current output ratings of 50 A, 100 A or 300 A
- Can be paralleled up to 10 units in any rating combination
- Ultra fast response time (1/2 cycle)
- Cancel harmonic up to 50th order
- ABS Certified for Marine applications
II. Accusine features

● Input
 • Voltage : 208-480V, -10%, +10%; auto sensing
 • Phases : 3-phase, 3-wire with or without neutral. Operation with single phase
 • Frequency : 50 Hz or 60 Hz, +/- 5% auto-sensing

● Compensation characteristics
 • Harmonics covered : H2 to H50 (no filtering on neutral conductor)
 • Type of compensation : Harmonics - cos phi - mixed (Hn + cos)
 • Compensation mode : overall
 • Attenuation ratio : 10:1 overall
 • Cos phi correction : Up to unity; can also inject lagging VARS
 • THDU reduction : Guaranteed compliance with IEEE519; UK G5/4 or IEC 61000-2-3
 • Response time : < 10 ms
 • Overload : Automatic current limitation
II. Customer benefits / active power solutions

● Safe and reliable AC electrical distribution systems
 ● Overloading and overheating of the neutral conductor cancelled
 ● Nuisance tripping of protection circuit breakers avoided

● Improved power quality
 ● Reduction of the THD(V)
 ● Cancellation of the voltage potential on the neutral conductor

● Increased lifetime of AC distribution system equipment

● Over-sizing cables, transformers and other AC distribution equipment avoided

● Compliance of installations with harmonic standards ensured

● Improved power factor

● Lower energy expenses/bills
I. Introduction

II. Harmonic mitigation solution

III. Case study

IV. Conclusion
III. Accusine application case study

- Oil platform in the North Sea with turbine / diesel generators feeding 6 KV network
 - Mechanical resonance on the platform when pump VFDs operated above 49 Hz due to generator loading
 - Each 1 Hz increment in pump speed equals $6k/day incremental revenue per pump (2003 prices)

- 2 x 600 KW VFDs at 380V
 - 300A AHF for each VFD
 - Operating in harmonic + power factor correction mode
 - Increased pump speed by 1 Hz
III. Accusine application case study

- THD(V) reduced from 12.6% to 6.0%
- Note high voltage notching & distortion on generator fed network

- THD(I) reduced from 31.8% to 7.2%
- PF from 80.3% to 95.2%
I. Introduction

II. Harmonic mitigation solution

III. Case study

IV. Conclusion
IV. Conclusion

- Power quality issues are well worth some consideration,

- Even more so for Oil & Gas processes where the availability and quality of Power is quite critical,

- Correct identification of the root causes of the problem is essential to choosing and implementing the best solution right from the start => Talk to the experts.
The 3 main messages

● Schneider Electric is your Power Quality expert

● We offer a variety of solutions and products to help identify and correct power quality problems

● Investing in power quality will improve both your operations and profits